

TOWNSHIP ESTABLISHMENT APPLICATION OF PORTION 5 & 6 OF THE FARM SUNRELLA AGRICULTURAL HOLDINGS

STORMWATER MANAGEMENT REPORT

REPORT 2019-094-23 Rev-0 MARCH 2025

CLIENT: GROWTHPOINT & APETURE PROPERTIES

PREPARED BY: EDS Engineering Design Services (Pty) Ltd 473 Lynnwood Road Sussex Office Park, Block B Ground Floor Lynnwood, Pretoria EDS Engineering Design Services (Pty) Ltd Reg. No: 2006/021564/07 VAT No: 4190230971 Directors: C.P. Bruyns Pr Eng (Chairman), H.J. Fekken Pr Eng., G.D. Joubert Pr Eng., J.P Monahadi **, H.S. Steenkamp Pr Eng., G. van der Walt Pr Eng. Senior Associate: S.N Maroya Pr Tech Eng., A.D.D van den Heever Pr Eng., F.H.B van Eyk Pr Eng., M de Jager Pr Eng. Tel (012) 991 1205 Fax (012) 991 1373

EDS Engineering Design Services (Pty) Ltd 473 Lynnwood Road Sussex Office Park, Block B Ground Floor Lynnwood, Pretoria P.O. Box 33920 GLENSTANTIA 0010 Tel (012) 991 1205 Fax (012) 991 1373

Outline Scheme Report Information Sheet

Report number	:	2019-094-23-Rev-0
Local authority	:	City of Johannesburg Metropolitan Municipality
Proposed change	:	Township Establishment Application
Development type	:	Industrial 3, Warehouses
Property description	:	Portion 5 and Portion 6 of the farm Sunrella Agricultural Holdings (Lanseria Ext 79, erf 976 and erf 977)

Report undertaken by:

Name	:	D.H. van der Merwe
Signature	:	De
Qualifications	:	B.Eng (Civil)
Email address	:	dean@edseng.co.za

Report reviewed by:		
Name	:	F.H.B van Eyk Pr. Eng
Signature	:	THE-Exc
Qualifications	:	B.Eng (Civil), B.Eng (Hons) (Water Resources)
ECSA Registration	:	Pr. Eng. 20160826
Email address	:	derik@edseng.co.za

PORTION 5 AND 6 OF THE FARM SUNRELLA AGRICULTURAL HOLDING OUTLINE SCHEME REPORT STORMWATER MANAGEMENT REPORT

CONTENTS

Chapter	Desc	ription	Page
1	INTR	ODUCTION	1
2	DET	AILS OF THE APPLICANT	1
3	SITE	INFORMATION	2
	3.1	SITE LOCATION	2
	3.2	PROPERTY DESCRIPTION	2
4	DEV	ELOPMENT INFORMATION	3
	4.1	EXISTING LAND-USE RIGHTS	3
	4.2	PROPOSED LAND-USE RIGHTS	3
5	OBJ	ECTIVES OF THE STORMWATER MANAGEMENT PLAN	4
6	PLA	NNING AND DESIGN CONSIDERATIONS	4
	6.1	REQUIREMENTS OF THE JOHANNESBURG ROADS AGEN((JRA)	CY 4
7	CUR	RENT STORMWATER SYSTEM	4
8	PRO	POSED STORMWATER SYSTEM	5
9	DES	GN CALCULATIONS	5
	9.1	ESTIMATED PRE-DEVELOPMENT STORMWATER RUNOFF	5
	9.2	ESTIMATED POST-DEVELOPMENT STORMWATER RUNOFF	7
	9.3	ATTENUATION PONDS	8
	9.4	UPSTREAM CATCHMENT AREA REQUIREMENTS	11
	9.5	EXTERNAL STORMWATER REQUIREMENTS	13
10	CON	CLUSIONS	14
11	REC	OMMENDATION	14

ANNEXURE A: SITE LOCATION MAP	15
ANNEXURE B: PROPOSED TOWNSHIP LAYOUT	16
ANNEXURE C: EXISTING ZONING CERTIFICATES	17
ANNEXURE D: CONDITIONS OF ESTABLISHMENT	18
ANNEXURE E: EXISTING STORMWATER INFORMATION	19
ANNEXURE F: STORMWATER MANAGEMENT LAYOUT DRAWING	20
ANNEXURE G: STORMWATER CALCULATIONS	21
ANNEXURE H: CULVERT CALCULATIONS	22

1 INTRODUCTION

EDS Engineering Design Services (Pty) Ltd (EDS Engineers) was appointed to compile an Stormwater Management Report for the township application of Erf 976 and Erf 977, Lanseria Extension 79 on Portion 5 and Portion 6 of the farm Sunrella Agricultural Holdings Township.

The application site is located in Lanseria and falls in the area of jurisdiction of the City of Johannesburg Metropolitan Municipality.

This report describes the existing civil engineering stormwater management in proximity to the application site, the expected demands as a result of the change of the zoning rights and evaluates the capacity of the existing networks to accommodate the expected demands.

2 **DETAILS OF THE APPLICANT**

The details of the applicant:	
Company Name:	GROWTHPOINT PROPERTIES
Physical Address:	The place 1 Sandton Drive Sandton Gauteng
	2196
Contact Person:	Polla Scholtz
Telephone Number:	(011) 944 6050
Company Name:	APERTURE PROPERTIES
Physical Address:	89 Bute Lane, Sandown Sandton South Africa
Contact Person:	Hilton Carty
Telephone Number:	(079) 916 3982
-	
The details of the town plann	
Company Name:	The Town Planning Hub cc
Physical Address:	Lombardy Corporate Park Block B, Unit M, Cole Rd, Shere Pretoria
Contact Person:	Adele Coertze
Telephone Number:	(012) 809 2229

The details of the applie

3 SITE INFORMATION

3.1 SITE LOCATION

The site is located within the municipal boundaries of the City of Johannesburg. The site details are as follows:

Site		Portions 5 and 6 of the farm Sunrella Agricultural Holdings			
Size		3.879 ha			
Boundaries	North	Side Road			
	East	Main Road (Proposed K215)			
	West	Lanseria Airport Extension 1			

The location of the proposed township is shown in Annexure A.

3.2 PROPERTY DESCRIPTION

The application site is on portions 5 and 6 of the farm Sunrella Agricultural Holdings.

The physical combined size of portions 5 and 6 of the farm Sunrella Agricultural Holdings is 3.879 ha. A request to the city of Johannesburg Metropolitan Municipality for the approval of the township establishment of Lanseria Extension 79 of Erf 976 with Erven 977 measuring 3.879 ha in extent has been submitted.

Erf 976 and Erf 977 of Lanseria Extension 79 will be consolidated. For the purposes of this report, the site will hereafter be referred to as Lanseria Extension 79.

The proposed subdivision layout is included in Annexure B.

4 DEVELOPMENT INFORMATION

4.1 EXISTING LAND-USE RIGHTS

Portion 5 and Portion 6 of the farm Sunrella A/H are currently zoned "Agriculture" permitting land and building use for any bona fide farming activity. A copy of the zoning certificates is included in **Annexure C**.

The existing land use rights are summarised in **Table 4.1.1** below.

Table 4.1.1: Existing land use rights

Erf nr	Existing zoning	Size (ha)	Density	Coverage	FAR	Height (m)
Portion 5 and 6	Agriculture	3.879	N/A	N/A	N/A	N/A

4.2 PROPOSED LAND-USE RIGHTS

The zoning of the application site will change to "Industrial 3".

The schedule of rights as well as an extract of the motivation memorandum as submitted by the town planner, indicating the proposed development controls, are included in **Annexure D**.

The proposed land use rights are summarised in **Table 4.2.1** below.

Table 4.2.1: Proposed land use rights

Erf nr	Proposed zoning	Size (ha)	Density	Coverage	FAR	Height (m)
Lanseria Extension 79	Industrial 3	3.879	N/A	60%	0.6	25

5 OBJECTIVES OF THE STORMWATER MANAGEMENT PLAN

The objectives of the stormwater management plan are as follows:

- To determine the stormwater runoff for the pre-development site conditions.
- To determine the stormwater runoff for the post-development conditions.
- To ensure that the stormwater runoff for a 100-year storm can discharge through a flood escape route to ensure that no flooding on site occurs.
- To ensure that the quantity and the rate of stormwater runoff from the site is controlled as per the requirements of the Johannesburg Roads Agency (JRA).
- Calculate and allow for external stormwater management as no external system is available in the facility of the proposed development.

6 PLANNING AND DESIGN CONSIDERATIONS

6.1 REQUIREMENTS OF THE JOHANNESBURG ROADS AGENCY (JRA)

The Stormwater Management Report and design considerations are based on the requirements of the following policies and design guidelines:

- The City of Johannesburg Metropolitan Municipality *Stormwater Management By-Law.*
- Johannesburg Roads Agency SOC Limited (JRA) Roads & Stormwater Manual – Volume 1 Code of Procedure.
- The South African National Roads Agency SOC Limited Drainage Manual
- Stormwater design manual for the City of Johannesburg 2019.

7 CURRENT STORMWATER SYSTEM

The existing stormwater reticulation consists of the following:

• There are no existing stormwater infrastructure networks in the surrounding area of the application site.

The existing stormwater information was received from the Johannesburg Roads Agency and is included in **Annexure E**.

8 PROPOSED STORMWATER SYSTEM

The Stormwater Management By-Laws of the City of Johannesburg specifies that an on-site stormwater drainage facility must be provided on every development site and must have sufficient capacity to convey stormwater without flooding or damaging any existing or proposed structure.

Stormwater attenuation facilities are required to reduce the post-development runoff rates to be the same as the pre-development runoff rates. The stormwater would discharge through flow constricting outlet structures and will be discharged into a new stormwater system next to Preller Drive, which will discharge into the natural water course.

The site will be shaped to enable the stormwater runoff for the 100-year storm event to discharge via surface flow into the nearby stream on the eastern side of the application site.

The proposed positions of the stormwater attenuation facilities are included in **Annexure F**.

9 DESIGN CALCULATIONS

The area of the application site for the stormwater calculation is 3.879 ha.

9.1 ESTIMATED PRE-DEVELOPMENT STORMWATER RUNOFF

The simplified rational method was used to determine the estimated pre-development runoff for the application site. The design data for determining the stormwater runoff for the 2- to 50-year recurrence interval design storm events for the pre-development conditions are summarised in **Table 9.1.1**.

		Portion 5 and 6 of the Farm Sunrella A/H	
Catchment Area (A)		38 790	m²
МАР		750	mm/year
Runoff Factor (C)		0.3	
Time of Concentration	n (Tc)	30	minutes
	1-2 year	50	mm/hr
	1-5 year	71	mm/hr
Poinfall Intensity (I)	1-10 year	86	mm/hr
Rainfall Intensity (I)	1-20 year	104	mm/hr
	1-25 year	108	mm/hr
	1-50 year	130	mm/hr

Table 9.1.1: Pre-development runoff data

The following formula applies:

$$Q = CIA/3.6$$

Where,

- C = run-off coefficient
- I = Average rainfall intensity over the catchment (mm/hr)

A = Catchment area (m²)

The estimated pre-development stormwater runoff for the 2- to 50-year recurrence interval design storm events is summarised in Table 9.1.2 below.

Table 9.1.2 Estimated pre-development stormwater runoff

		Portion 5 and 6 of the Farm Sunrella A/H	
	1-2 year	0.162	m³/s
Peak Flow (Q)	1-5 year	0.230	m³/s
	1-10 year	0.278	m³/s
	1-20 year	0.336	m³/s
	1-25 year	0.349	m³/s
	1-50 year	0.421	m³/s

The pre-development stormwater calculations are included in **Annexure G**.

9.2 ESTIMATED POST-DEVELOPMENT STORMWATER RUNOFF

The simplified rational method was used to determine the estimated post-development runoff for the application site. The design data for determining the stormwater runoff for the 2- to 50-year recurrence interval design storm events for the post-development conditions are summarised in **Table 9.2.1**.

		Erf 976 & 977 (Lanseria Extension 79)	
Catchment Area (A)		38 790	m²
МАР		750	mm/year
Runoff Factor (C)		0.9	
Time of Concentration (Tc)		15	minutes
	1-2 year	80	mm/hr
	1-5 year	107	mm/hr
Painfall Intensity (I)	1-10 year	129	mm/hr
Rainfall Intensity (I)	1-20 year	152	mm/hr
	1-25 year	157	mm/hr
	1-50 year	183	mm/hr

Table 9.2.1: Post-development runoff data

The following formula applies:

$$Q = CIA/3.6$$

Where,

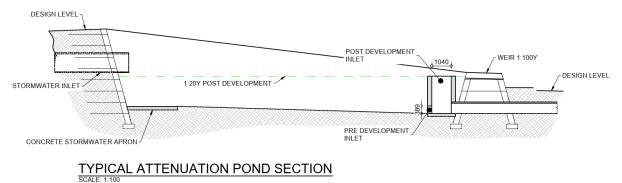
- Q = Peak flow (m^3/s)
- C = run-off coefficient
- I = Average rainfall intensity over the catchment (mm/hr)
- A = Catchment area (m^2)

The estimated post-development stormwater runoff for the 2- to 50-year recurrence interval design storm events are summarised in **Table 9.2.2**.

PORTION 5&6 – SUNRELLA AGRICULTURAL HOLDINGS

		Erf 976 & 977 (Lanseria Extension 79)	
	1-2 year	0.776	m³/s
Peak Flow (Q)	1-5 year	1.038	m³/s
	1-10 year	1.252	m³/s
	1-20 year	1.475	m³/s
	1-25 year	1.524	m³/s
	1-50 year	1.776	m³/s

Table 9.2.2 Estimated post-development stormwater runoff


The post-development stormwater calculations are included in Annexure G.

9.3 ATTENUATION PONDS

From Tables 9.1.2 and 9.2.2 above, there would be an increase in the stormwater runoff for the pre-development conditions of the application site.

The runoff associated with the development is to be attenuated such that the predevelopment flow for the 5- to 25-year storm events is not exceeded. The attenuation facility must also be capable of withstanding the 50-year storm event.

The proposed typical attenuation pond detail is shown below, the final drawings will be submitted with the Site Development application for approval to local authorities.

9.3.1 SIMPLIFIED HYDROGRAPH METHOD

The simplified hydrograph method, as stipulated in the SANRAL Drainage Manual was used to calculate the estimated required stormwater attenuation volume for the application site and is summarised in Tables 9.3.1

PORTION 5&6 – SUNRELLA AGRICULTURAL HOLDINGS

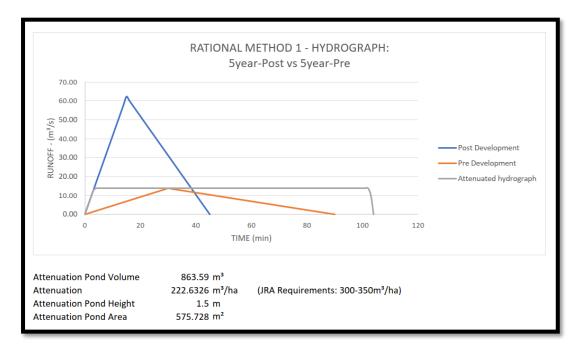
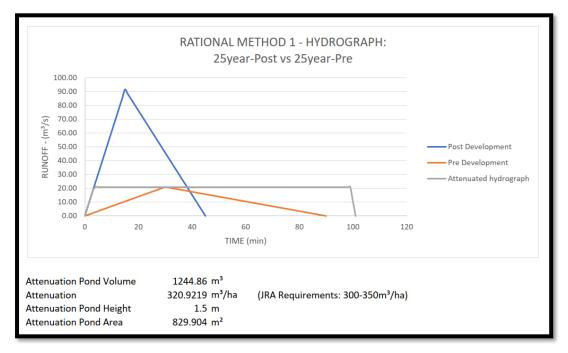
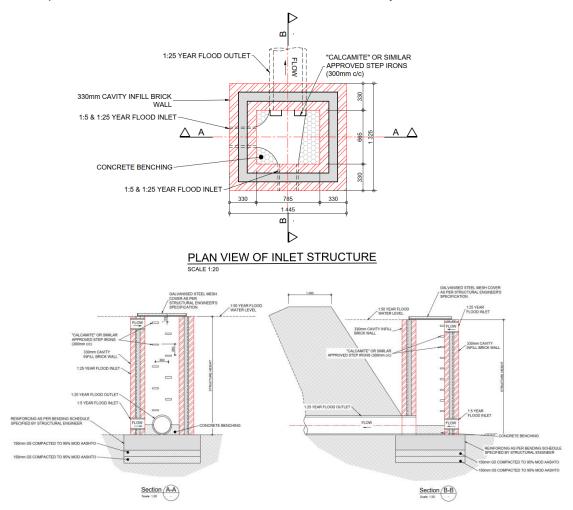



Figure 3: 5y-Pre vs 5y-Post Hydrograph

Figure 4: 25y-Pre vs 25y-Post Hydrograph

		Pre- development (m³)	Post- development (m³)	Attenuation Pond Volume (m ³)
Lanseria	1:5 year	621	1401.3	863.6
Extension 79	1:25 year	942.3	2057.4	1244.9

* Simplified Hydrograph – 3TC


The estimated design summary is included in Annexure G.

PORTION 5&6 – SUNRELLA AGRICULTURAL HOLDINGS

The designs of the attenuation facilities were done to size the pond for optimum storage volume. The proposed approximate positions of the attenuation facilities are located in the north-eastern corner of the application site and are indicated on the layout in **Annexure F**.

9.3.2 ATTENUATION POND OUTLET CONTROL STRUCTURE

The post-development stormwater will be managed and discharged in accordance with pre-development conditions through the attenuation pond outlet structure. This system will effectively control flood events with return periods of 1 in 5 years, and 1 in 25 years and a pond overflow weir structure will control the 1 in 100 years storm event.

9.3.3 STORMWATER OUTLET CONTROL STRUCTURE

The attenuation pond outlet will include an erosion and energy dissipation structure as approved by the JRA and designed in accordance with the NTC Road Drainage Manual. This will ensure that the concentrated flow at the road culvert will be dissipated and hence have no detrimental effect on the downstream watercourse. A typical example is shown below, the design and final drawings will be submitted for approval with the external road design to the local authorities.

9.4 UPSTREAM CATCHMENT AREA REQUIREMENTS

The estimated stormwater runoff from the upstream catchment area, originating from Lanseria, will be conveyed through an underground culvert system located on Erf 977.

The stormwater will then be discharged into the external stormwater system constructed as part of the Lanseria Extension 11 development external road upgrades. The culvert outlet will be equipped with an erosion and energy dissipation structure, which must be approved by the Johannesburg Roads Agency (JRA) and designed in accordance with the **NTC Road Drainage Manual** and the **NHI Hydraulic Design of Energy Dissipators for Culverts and Channels**. This structure will ensure that the concentrated flow at the culvert outlet is effectively dissipated, thereby preventing any adverse impact on the downstream watercourse.

Catchment Area (A)	644 330	m²
МАР	750	mm/year
Runoff Factor (C)	0.4	
Time of Concentration (Tc)	94	minutes

 Table 9.4.2: Estimated stormwater runoff for upstream flow

Method	1:25 year peak flow (m³/s)	1:50 year peak flow (m³/s)
Rational Method	2.23	3.15
Alternative Rational	3.66	4.51
Adopted	3.66	4.51

The culvert has been designed to accommodate the **1:50-year** pre-development conditions, which is considered sufficient, as all future upstream developments will be required to design attenuation ponds for the **1:5-year** pre-development runoff.

A **1,800mm x 1,500mm** box culvert will be constructed at the location indicated in **Annexure F**.

A representative example is provided below, while the final design and drawings will be submitted to the relevant local authorities for approval.

PORTION 5&6 - SUNRELLA AGRICULTURAL HOLDINGS

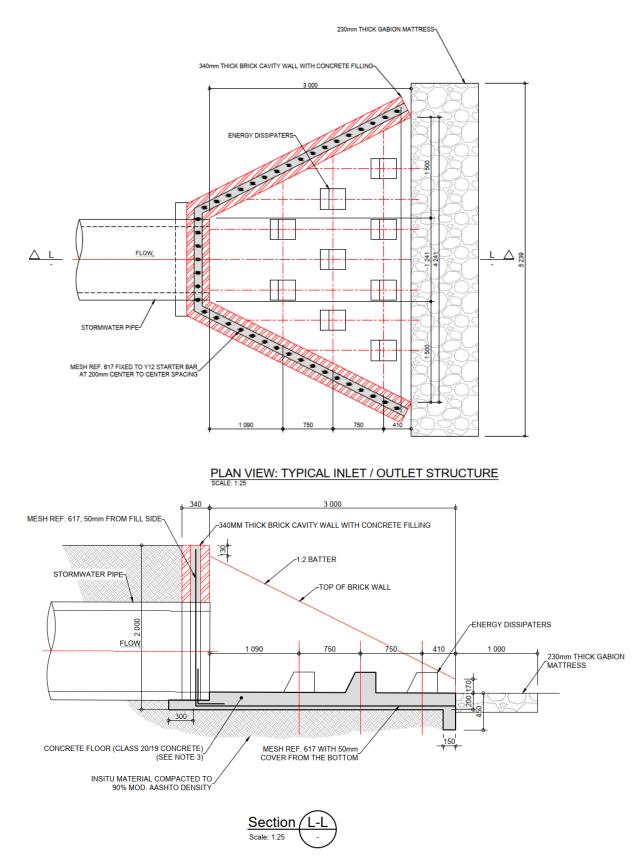


Figure 3: Typical outlet structure

9.5 EXTERNAL STORMWATER REQUIREMENTS

The road stormwater network will be installed next to Preller Road, as part of Extension 11 development.

The stormwater system will be designed to accommodate the 1:25 year storm event for the external road and surrounding areas flow, and including the flow discharged from the culvert system channelling the upstream catchment area.

The total estimated flow from the catchments is:

- 1:25-year Culvert Discharge Flow = $3.66 \text{ m}^3/\text{s}$
- 1:25-year Road Flow = C*I*A/3.6 = (0.9*157*0.003352) / 3.6 = 0.132 m³/s
- 1:5-year Pre-development Lanseria X11 Discharge Flow = 0.250 m³/s

Total accumulated flow is 4.042 m³/s.

A 1500mmΦ conduit pipe network is required to be installed running parallel to Preller Road and discharging to the natural watercourse.

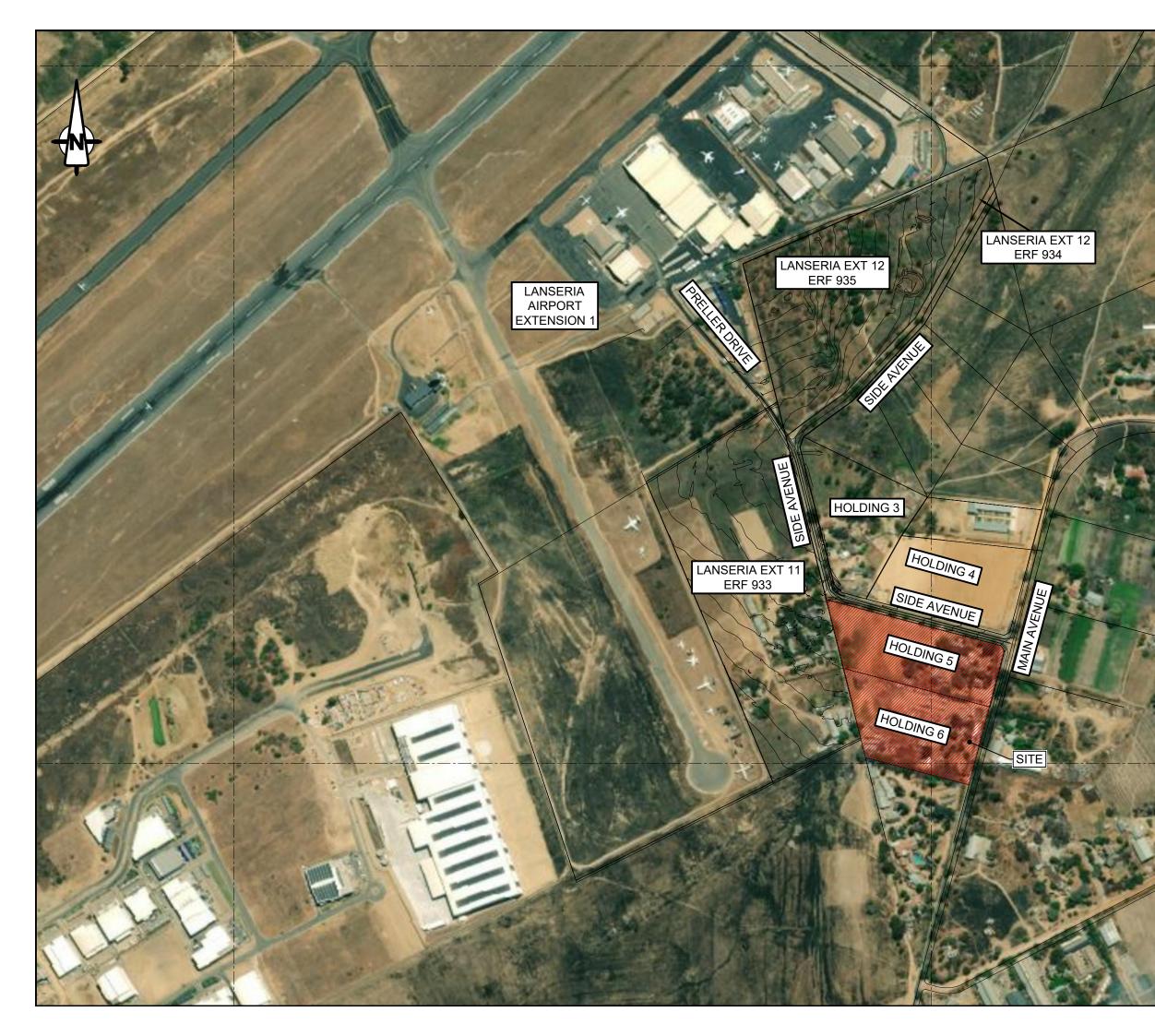
The stormwater calculations are included in **Annexure G**.

10 CONCLUSIONS

It can be concluded that:

- The stormwater runoff would increase due to the proposed development.
- The stormwater runoff for the 1:100 year storm event can be discharged from the site by means of surface flow into the natural watercourse on the north-eastern side to ensure no flooding occurs on site.
- The quantity and rate of stormwater runoff from the site will be buffered and controlled as per the requirements of the Johannesburg Roads Agency by means of attenuation facilities.
- The attenuation pond outlet will include an erosion and energy dissipation structure as approved by the JRA and designed in accordance with the NTC Road drainage Manual.
- Upstream catchment stormwater management will be channelled through culvert that has been designed to accommodate the **1:50-year** predevelopment conditions, which is considered sufficient, as all future upstream developments will be required to design attenuation ponds for the **1:5-year** predevelopment runoff.

11 **RECOMMENDATION**


It is recommended that the Stormwater Management Report for the township establishment of Erf 976 and Erf 977, Lanseria Extension 79 on Portion 5 and Portion 6 of the farm Sunrella Agricultural Holdings Township be supported by the Johannesburg Roads Agency (JRA) as the quantity and the rate of stormwater runoff from the site can be controlled as per the requirements of JRA.

F.H.B van Eyk Pr. Eng. (20160826)

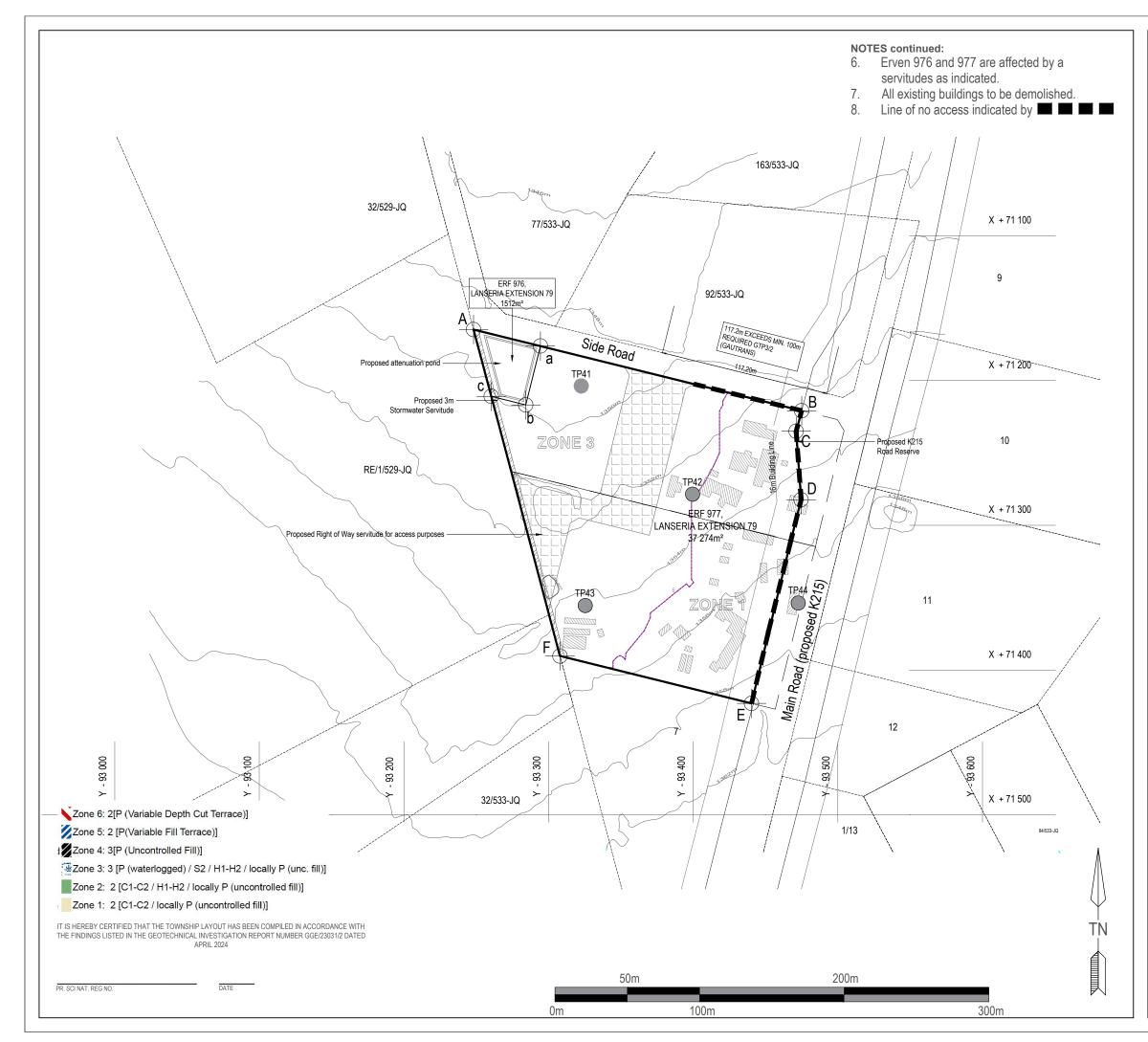
Annexures:

- Annexure A: Site Location Map
- Annexure B: Proposed Township Layout
- Annexure C: Existing Zoning Certificate
- Annexure D: Conditions of Contract
- Annexure E: Existing Stormwater Information
- Annexure F: Stormwater Management Layout Drawing
- Annexure G: Stormwater Calculations
- Annexure H: Culvert Calculations

ANNEXURE A: SITE LOCATION MAP

<u>GENERAL NOTES:</u>
1. REFER TO ALL RELEVANT DRAWINGS & SPECIFICATIONS, DO NOT SCALE ANY DIMENSIONS.
2. WHERE DISCREPANCIES OCCUR BETWEEN THE PROJECT DRAWINGS OR SPECIFICATIONS, THESE SHOULD BE REPORTED IMMEDIATELY TO THE PRINCIPAL AGENT.
3. ALL DIMENSIONS AND LEVELS TO BE CHECKED ON SITE AND CORRELATED WITH THE ARCHITECTS DRAWING BEFORE CONSTRUCTION COMMENCES.
4. ALL WATERPROOFING AND EARTH POISONING DETAILS TO BE IN ACCORDANCE WITH THE ARCHITECT'S SPECIFICATION AND INSTRUCTIONS. KВ 26/11/'24 FOR INFORMATION Α Date: Revision Details: By: Client: Architect e•d•s Structural, Civil and **Transportation Engineers** Sussex Office Park Tel: 012 991 1205 473 Lynnwood Road Fax: 012 991 1373 Lynnwood e-mail: info@edseng.co.za Pretoria

Project:


LANSERIA PROJECT RUNWAY

Description

LOCALITY PLAN (FIGURE 1)

Paper size:	Drawn:	Checked:		Designed:	
A3	KB	D vd M		D vd M	
Scale:	Project Number:		Drawing	Number:	Revision:
1:5000	2019-094		00	50	А

ANNEXURE B: PROPOSED TOWNSHIP LAYOUT

250		ALE 1	FY F : 50 00		N	3km
om of the second s	500m			2km		
ABCDEF, 2. Proposed access in 3. Erf 976 is 1 512m ² ii 4. Erf 977 is 37 274m ² 5. All areas	K215 Provi dicated. indicated b n extent.	incial y poir y poir	Road A nts Aab nts aBC e estim	Alignme cA and DEFcb ated, s	ent ar I mea	nd line of no Isures d measures
PROPOSED TOWN				ЕХТ	EN	SION 79
OF THE FARM: S	Y: CITY	ΟF	RICUL J O	HAN	ΝE	
	Y: CITY Metro	0 F 0 P 0	RICUL J O	HAN NMU	ΝE	SBURG
	Y: CITY Metro		RICUL J O LITA	HAN NMU	N E J N I C	SBURG
	Y: CITY Metro Lan	OF OPO	RICUL J O LITA E TABL	HAN NMU	N E J N I C	S B U R G CIPALITY
LOCAL AUTHORIT	Y: CITY METR(LAN AREA 38 786m ² 0 m ² 38 786m ² F ERVEN	0 F 0 P 0 10 US 0 F T C 100.	RICUL JO LITA E TABL WNSHIP 00 % 0 % 0 %	HANN NML E # OF ER 2 2 ST RADIENT: SRADIENT: SRADIENT: 1 : 2 5	N E JNIC	SBURG CIPALITY ERF NUMBERS 976 - 977 976 - 977 S A A A O n A 3
LOCAL AUTHORIT	Y: CITY METR(LAN AREA 38 786m ² 0 m ² 38 786m ² F ERVEN	OFTC 100. 0.C 100. 1	RICUL JO E TABL WNSHIP 00 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0	HANN NML E # OF ER 2 2 ST RADIENT: SRADIENT: GHT:	N E JNIC	SBURG CIPALITY ERF NUMBERS 976 - 977 976 - 977 S A A A O n A 3
LOCAL AUTHORIT	Y: CITY METR(LAN AREA 38 786m ² 0 m ² 38 786m ² 0 m ² 38 786m ² F ERVEN MINIMUM RU	OFTC 100. 0.C 100. 1	RICUL JO E TABL WNSHIP 00 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0	HANN NML E # OF ER 2 2 ST RADIENT: SRADIENT: GHT: 1 : 2 5 CPD/LS INTERVAL: 2 SYSTEM: 8 SURVEY: NED BY:	N E JNIC	SBURG ERF NUMBERS 976 - 977 S A O n A 3 9/1 2m WGS 84 of Johannesburg GIS B. Oosthuizen B. Fietcher
LOCAL AUTHORIT	Y: CITY METRO LAN AREA 38 786m ² 0 m ² 38 786m ² 0 m ² 38 786m ² F ERVEN MINIMUM RU BMISSION / AMENDME ISSION		RICUL JO LITA E TABL WNSHIP 00 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0 % 0	HANN NML E # OF ER 2 2 3 7 8 8 8 8 8 8 9 7 1 : 2 5 6 7 9 7 8 8 8 9 7 8 9 7 8 9 7 9 7 8 9 7 9 7		SBURG CIPALITY ERF NUMBERS 976 - 977 976 - 977 S A A A O n A 3 9/1 2m WGS 84 f Johannesburg GIS B. Costhuizen B.E. Fletcher K.L.

ANNEXURE C: EXISTING ZONING CERTIFICATES

ZONING INFORMATION CERTIFICATE PAD FOR APPLICATION SUBMISSIONS

Joburg

a world class African city Date: 12/03/2024

Requested by:	Sandy Ngwenya
Town Planning Scheme:	City of Johannesburg Land Use Scheme 2018
Name of Applicant:	THE TOWN PLANNING HUB CC
Erf/Holding Name/Farm Portion:	Holdings 5 and 6
Township/Holding Name/Farm Name:	Sunrella A.H.
Street Name and No:	Main avenue
ZONING INFORMATION	
Use Zone:	Undetermined
Height Zone:	A (As per attached table 4)
Floor Area Ratio:	As per attached table 6
Coverage:	As per attached table 5
Density:	No Density
Building Line:	As per attached table 7
Parking:	As per scheme
AMENDMENT SCHEME APPLICABLE:	N/A
Served By:	Sandy Ngwenya

Terms and Conditions:

The Town Planning Scheme is open for inspection on the 8th Floor 158 loveday Street Braamfontein between 8:00 and 15:30 weekdays. The applicant must verify the information contained herein by inspection of the scheme. Whilst the utmost is done to ensure accuracy the City of Johannesburg does not accept responsibility for any incorrect information given on this form. The applicant's attention is drawn to the general provisions of the Town Planning Scheme. It should be noted that the provisions of the Town Planning Scheme do not override any restrictive conditions that may be contained in the Title Deeds. PLEASE NOTE: No Information will be given telephonically due to the technical and interpretive complications.

Corporate Geo-Informatics 8th Floor, A-BLock, Metro Centre158 Civic Boulevard, Braamfontein

ANNEXURE D: CONDITIONS OF ESTABLISHMENT

STATEMENT OF THE CONDITIONS UNDER WHICH THE APPLICATION MADE BY GROWTHPOINT PROPERTIES LIMITED (REGISTRATION NUMBER 1987/004988/06) (HEREINAFTER REFERRED TO AS THE TOWNSHIP OWNER) IN TERMS OF THE PROVISIONS OF PART 3 OF CHAPTER 5 OF THE CITY OF JOHANNESBURG MUNICIPAL PLANNING BY-LAW, 2016 (AS AMENDED 2023) (HEREINAFTER REFERRED TO AS THE BY-LAW), FOR PERMISSION TO ESTABLISH A TOWNSHIP ON HOLDINGS 5 AND 6, SUNRELLA AGRICULTURAL HOLDINGS, GAUTENG PROVINCE, HAS BEEN APPROVED.

- 1. CONDITIONS TO BE COMPLIED WITH PRIOR TO THE OPENING OF THE TOWNSHIP REGISTER AND THE DECLARATION OF THE TOWNSHIP AS AN APPROVED TOWNSHIP.
- (1) CANCELLATION OF EXISTING CONDITIONS OF TITLE

The township owner shall at its own costs, cause the following restrictive conditions and/or servitudes to be cancelled or the township area to be freed there from:

T53698/2024 (Holding 5 Sunrella Agricultural Holdings)

A.(a); A.(b); A.(c); A.(c)(i); A.(c)(ii); A.(d); A.(d)(i); A.(d)(ii); A.(d)(iii); A.(d)(iv); A.(d)(v); A.(d)(v); A.(d)(vi); A.(e); A.(f); A.(g); A. (h); A.(i); A.(j)(i); A.(j)(ii); A.(j)(iii); A.(j)(iv)

<u>T27363/2024</u> (Holding 6, Sunrella Agricultural Holdings)

A.(a); A.(b); A.(c); A.(c)(i); A.(c)(ii); A.(d); A.(d)(i); A.(d)(ii); A.(d)(iii); A.(d)(iv); A.(d)(v); A.(d)(v); A.(d)(vi); A.(e); A.(f); A.(g); A.(h); A.(i); A.(j); A.(j(i); A.(j)(ii); A.(j)(iii); A.(j)(iv))

- (2) GENERAL
 - (a) The township owner shall, prior to approval of the General Plan, make arrangements with Corporate Geo-Informatics (CGIS) for the allocation of a street name to the public road (or street names to the public roads) in the township (to be indicated on the layout plan so that it forms part of the General Plan).
 - (b) The local authority shall, after approval of the General Plan, make arrangements with Corporate Geo-Informatics (CGIS) for the allocation of street numbers to the newly created erven in the township.
 - (c) Excision in terms of section 69 of the By-law

The holding on which the township is being established has been excised and the description of the land has been submitted as being farmland.

- (d) A satisfactory geo-technical report (in triplicate) shall be submitted to the local authority and the Amendment Scheme shall not be considered/approved by the local authority until such time as the comments on the said report, have been obtained and included in the mentioned Amendment Scheme.
- (e) The township owner shall submit acceptable proof that all outline scheme reports have been submitted to the Municipal Entities (Johannesburg Water and Johannesburg Roads Agency).
- (f) Authorisation/exemption to establish the township in terms of the National Environmental Management Act (No 107 of 1998) shall be obtained from the Department of Agriculture and Rural Development and shall be submitted to the local authority.
- (g) The comments of the South African National Roads Agency Limited on the establishment of the township, shall be obtained and shall be submitted to the local authority.

- (h) The comments of the Department: Mineral Resources on the establishment of the township, shall be obtained and shall be submitted to the local authority.
- (i) The comments of the Department of Roads and Transport (Gauteng Provincial Government) on the establishment of the township, shall be obtained and shall be submitted to the local authority.
- (j) The township owner shall obtain and submit a certificate from Eskom that electricity supply to the township, is available. Provided that if supply is not available and the township has been approved by the local authority 5 years or more than 5 years ago, a letter from Eskom shall be submitted confirming that supply is not available.
- (k) The township owner shall, after approval of the General Plan of the township, submit the relevant Amendment Scheme to the local authority for approval, in order that it can be published simultaneously with the declaration of the township as an approved township.
- (I) The township owner shall comply with the provisions of sections 28(5), (9), (10) and (11) of the By-Law.

2. CONDITIONS OF ESTABLISHMENT

(1) NAME

The name of the township is Lanseria Extension 79.

(2) DESIGN

The township consists of erven and roads as indicated on layout plan CPD/LSAX79/1.

(3) DESIGN AND PROVISION OF ENGINEERING SERVICES IN AND FOR THE TOWNSHIP

The township owner shall, to the satisfaction of the local authority, make the necessary arrangements for the design and provision of all engineering services of which the local authority is the supplier.

(4) ELECTRICITY

The local authority is not the bulk supplier of electricity to or in the township. The township owner shall in terms of Chapter 6 Part 1 of the By-law make the necessary arrangements with ESKOM, the licensed supplier of electricity for the provision of electricity.

(5) GAUTENG PROVINCIAL GOVERNMENT (DEPARTMENT OF AGRICULTURE AND RURAL DEVELOPMENT)

Should the development of the township not been commenced with before the application to establish the township, shall be resubmitted to the Department of Agriculture and Rural Development for exemption/authorisation in terms of the National Environmental Management Act, 1998 (Act 107 of 1998), as amended.

- (6) GAUTENG PROVINCIAL GOVERNMENT (DEPARTMENT OF ROADS AND TRANSPORT)
- (a) Should the development of the township not be completed before the application to establish the township, shall be resubmitted to the Department of Roads and Transport for reconsideration.
- (b) If however, before the expiry date mentioned in (a) above, circumstances change in such a manner that roads and/or PWV routes under the control of the said Department are affected by the proposed layout of the township, the township owner shall resubmit the application for

the purpose of fulfilment of the requirements of the controlling authority in terms of the provisions of Section 48 of the Gauteng Transport Infrastructure Act, 2001 (Act 8 of 2001).

(c) The township owner shall comply with the conditions of the Department as set out in the Department's letter dated

(7) NATIONAL GOVERNMENT (DEPARTMENT: MINERAL RESOURCES)

Should the development of the township not been completed before the application to establish the township, shall be resubmitted to the Department: Mineral Resources for reconsideration.

(8) ACCESS

Access to or egress from the township shall be provided to the satisfaction of the local authority and/or Johannesburg Roads Agency (Pty) Ltd and/or the Department of Roads and Transport.

(9) ACCEPTANCE AND DISPOSAL OF STORMWATER DRAINAGE

The township owner shall arrange for the stormwater drainage of the township to fit in with that of the adjacent road/roads and all stormwater running off or being diverted from the road/roads shall be received and disposed of.

(10) REFUSE REMOVAL

The township owner shall provide sufficient refuse collection points in the township and shall make arrangements to the satisfaction of the local authority for the removal of all refuse.

(11) REMOVAL OR REPLACEMENT OF EXISTING SERVICES

If, by reason of the establishment of the township, it should be necessary to remove or replace any existing municipal, TELKOM and/or ESKOM services, the cost of such removal or replacement shall be borne by the township owner.

(12) DEMOLITION OF BUILDINGS AND STRUCTURES

The township owner shall at its own costs cause all existing buildings and structures situated within the building line reserves, side spaces or over common boundaries to be demolished to the satisfaction of the local authority, when requested thereto by the local authority.

- (13) OBLIGATIONS WITH REGARD TO THE CONSTRUCTION AND INSTALLATION OF ENGINEERING SERVICES AND RESTRICTIONS REGARDING THE TRANSFER OF ERVEN
- (a) The township owner shall, after compliance with clause 2.(3) above, at its own costs and to the satisfaction of the local authority, construct and install all engineering services including the internal roads and the stormwater reticulation, within the boundaries of the township. Erven and/or units in the township may not be transferred into the name of a purchaser, prior to the local authority certifying to the Registrar of Deeds that these engineering services had been constructed and installed.
- (b) The township owner shall fulfil its obligations in respect of the installation of electricity, water and sanitary services as well as the construction of roads and stormwater drainage and the installation of systems therefor, as agreed between the township owner and the local authority in terms of clause 2.(3) above. Erven and/or units in the township, may not be transferred into the name of a purchaser, prior to the local authority certifying to the Registrar of Deeds that sufficient guarantees/cash contributions in respect of the engineering services have been submitted or paid to the said local authority.

(14) OBLIGATIONS WITH REGARD TO THE PROTECTION OF ENGINEERING SERVICES

The township owner shall, at its costs and to the satisfaction of the local authority, survey and register all servitudes required to protect the constructed/installed services. Erven and/or units in the township may not be or transferred into the name of a purchaser, prior to the local authority certifying to the Registrar of Deeds that these engineering services had been or will be protected to the satisfaction of the local authority.

(15) CONSOLIDATION OF ERVEN

The township owner shall, at its own costs, after proclamation of the township, submit an application for consent to consolidate Erven 976 and 977, to the local authority for approval.

3. DISPOSAL OF EXISTING CONDITIONS OF TITLE.

All erven shall be made subject to existing conditions and servitudes, if any:-

4. CONDITIONS OF TITLE

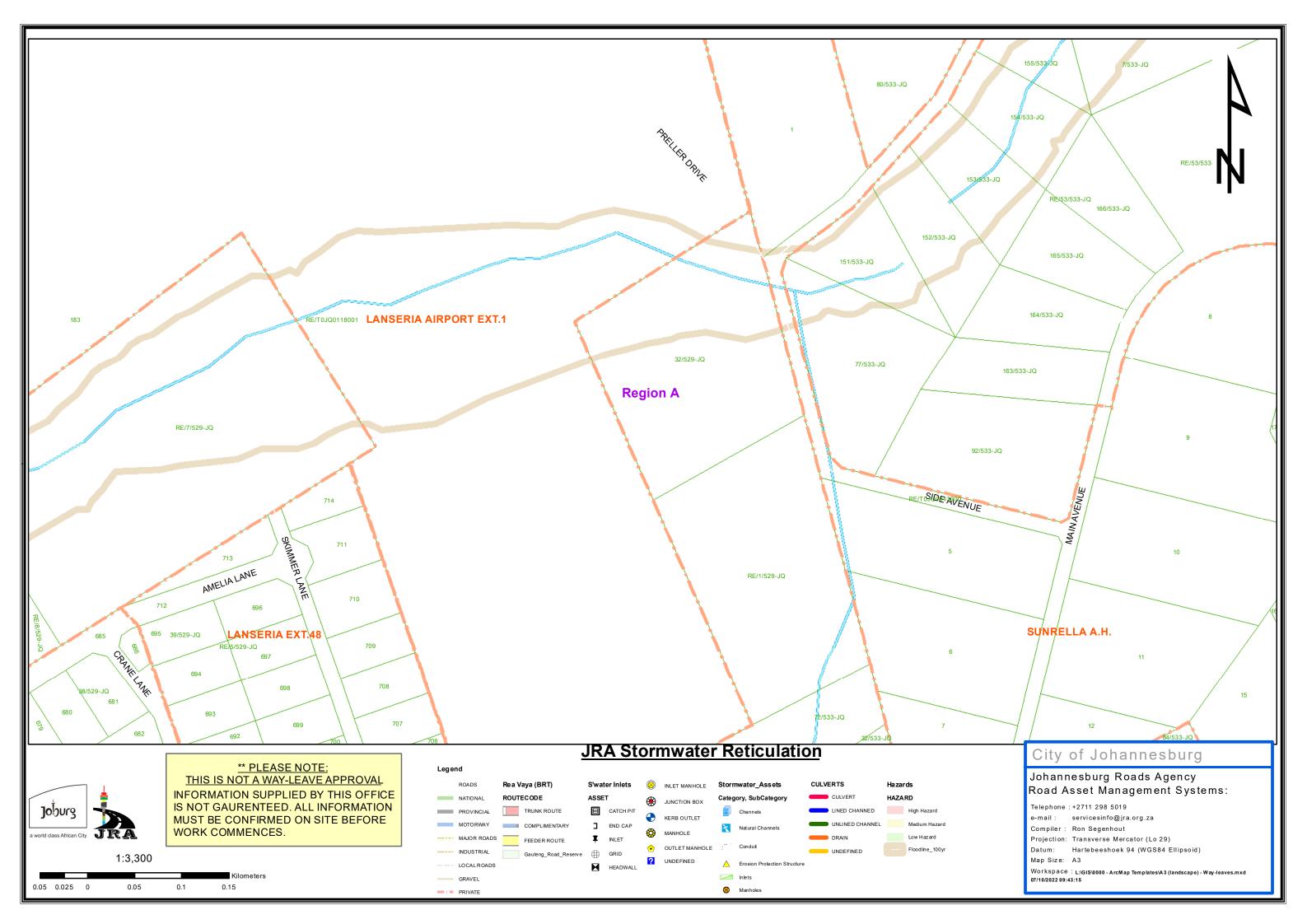
(A) Conditions of Title imposed by the local authority in terms of the provisions of Chapter 5 Part 3 of the By-Law

- (1) ALL ERVEN
 - (a) Each erf is subject to a servitude, 2m wide, in favour of the local authority, for sewerage and other municipal purposes, along any two boundaries other than a street boundary and in the case of a panhandle erf, an additional servitude for municipal purposes 2m wide across the access portion of the erf, if and when required by the local authority: Provided that the local authority may dispense with any such servitude.
 - (b) No building or other structure shall be erected within the aforesaid servitude area and no large rooted trees shall be planted within the area of such servitude or within 2m thereof.
 - (c) The local authority shall be entitled to deposit temporarily on the land adjoining the aforesaid servitude such material as may be excavated by it during the process of the construction, maintenance or removal of such sewerage mains and other works as it, in its discretion may deem necessary and shall further be entitled to reasonable access to the said land for the aforesaid purpose subject to any damage done during the process of the construction, maintenance or removal of such sewerage mains and other works being made good by the local authority.

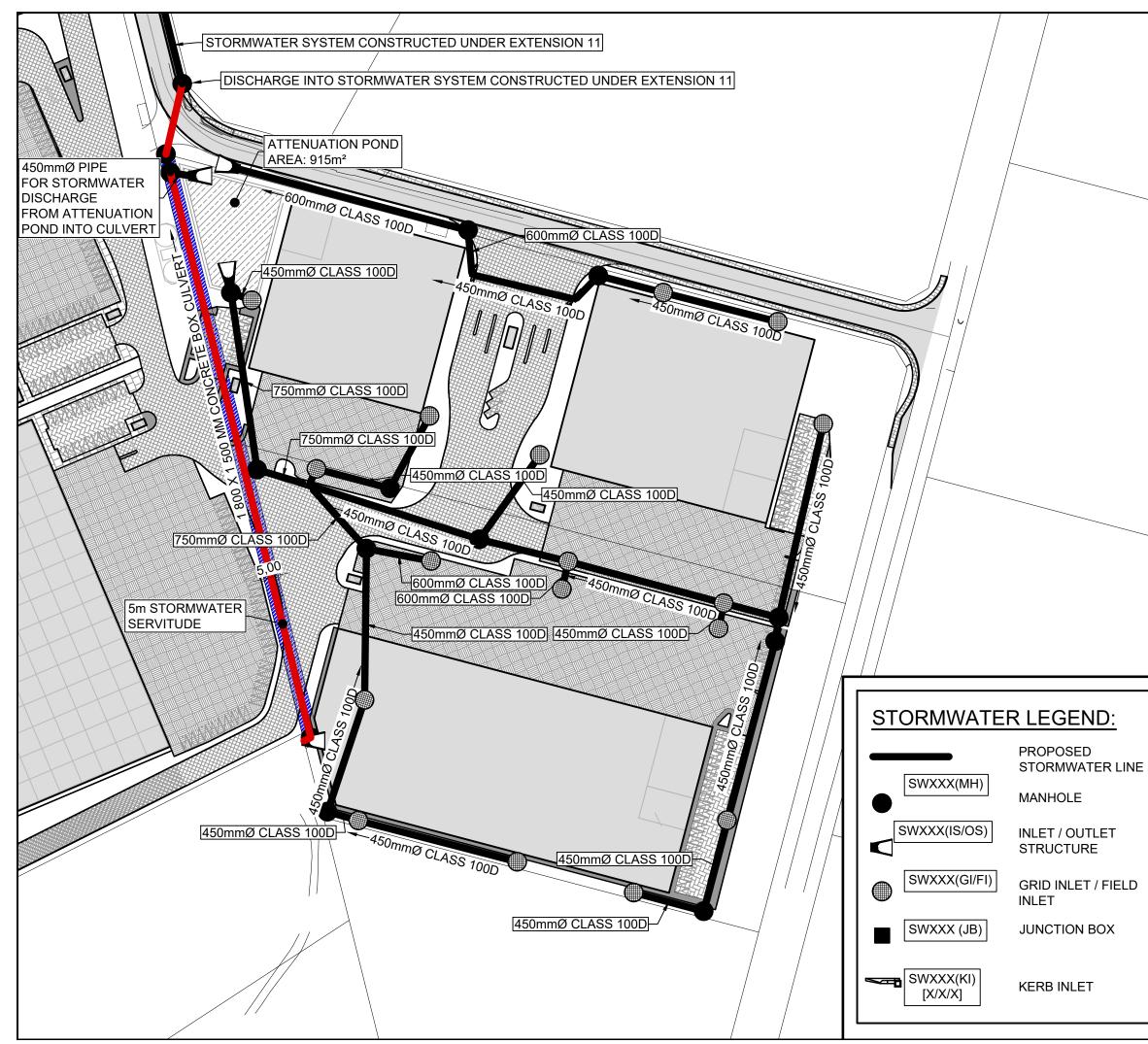
(2) ERVEN 976 AND 977

The erven are subject to a 3m wide servitude for stormwater services in favour of the local authority, along the western boundary as indicated on layout plan CPD/LSA X79/1.

5. CONDITIONS TO BE INCORPORATED IN THE TOWN PLANNING SCHEME IN TERMS OF SECTION 54 OF THE BY-LAW, IN ADDITION TO THE PROVISIONS OF THE CITY OF JOHANNESBURG LAND USE SCHEME, 2018.


(1) ERVEN 976 AND 977

COLUMN 1:


USE ZONE

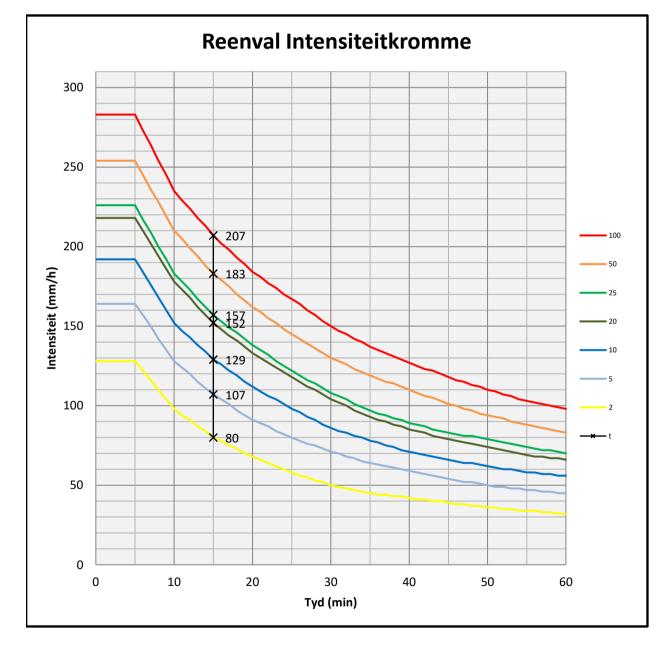
"Industrial 3" COLUMN 2: DESCRIPTION OF PORTION OF LAND Erven 976 and 977, Lanseria Extension 79 COLUMN 3: PRIMARY RIGHTS As per Scheme, Industrial purposes, commercial purposes, business purposes (excluding restaurants. motor showrooms, showrooms, medical consulting rooms, domestic service industries), builders yard, building material storage. USES WITH CONSENT (LAND USE TABLE 2) COLUMN 4: As per Scheme USES NOT PERMITTED (LAND USE TALBE 2) COLUMN 5: As per Scheme WIDTH OF SERVITUDE AREA COLUMN 6: 3m Stormwater Servitude along the western boundary COLUMN 7: STOREYS OR HEIGHT IN METERS 25m (3 storeys) COLUMN 8: COVERAGE As per Scheme, 60% COLUMN 9: F.A.R OR FLOOR AREA As per Scheme, 0.6 Offices restricted to 2500 m² COLUMN 10: PARKING PROVISION As per Scheme, Adequate, paved parking spaces, together with the necessary manoeuvring area, shall be provided on the erf to the satisfaction of the Council, in the following ratios: Commercial: 0.3 bays per 100m² Offices: 2 bays per 100m DENSITY COLUMN 11: Not applicable COLUMN 12: **BUILDING LINE PROVISION** As per Scheme Street: 3m 16m (may be relaxed to 10m with Main Road (K215): approval) COLUMN 13: **GENERAL PROVISIONS** A Site Development Plan to the satisfaction of the 1. council, shall be submitted for evaluation and approval prior to the submission of building plans and/or the development of the erf. COLUMN 14: AMENDMENT SCHEME NUMBER

ANNEXURE E: EXISTING STORMWATER INFORMATION

ANNEXURE F: STORMWATER MANAGEMENT LAYOUT DRAWING

	1. 2. 3. 4.	DO NOT : WHERE D: DRAWING: REPORTE ALL DIMI SITE ANI BEFORE G ALL WAT TO BE I	ES: D ALL RELEVAN SCALE ANY DII ISCREPANCIES S OR SPECIFI D IMMEDIATEL' ENSIONS AND I CORRELATED CONSTRUCTION ERPROOFING AN N ACCORDANCE CATION AND I	MENSIONS OCCUR BE CATIONS, Y TO THE LEVELS TO WITH THE COMMENCE ND EARTH WITH THE	THESE SI PRINCIP, D BE CHE E ARCHIT ES. POISONII E ARCHIT	HE PROJEC HOULD BE AL AGENT CKED ON ECTS DRA NG DETAI	CT WING
_							
		6/11/'24	FOR INFORMATIO	N			КВ
	Rev. No:	Date:		Revision I Client:	Details:		By:
			9.	Architect:		5	
	1			-			
		Т	Structur ransporta				
		sex Office	e Park		-		
		Lynnwoo nwood	d Road)12 991 12)12 991 13	
	Pret	toria		Project:	e-mail: i	nfo@edser	ng.co.za
				r tojeci.			
			LAN	ISER	IA		
			PROJEC			Y	
						•	
			D	escription:			
		ST	ORMWA		-	DUT	
			(FIG	URE	3)		
			Descin	~	-lue el. 1	- ·	
	Paper si		Drawn: KB		cked: dM	Desig	
	Scale		Project Numbe		Drawing		Revision:
	100	0	2019-09	94	00	52	А

ANNEXURE G: STORMWATER CALCULATIONS


Stormwater - Standaard Intensiteitskrommes

Klas =	В
t =	15

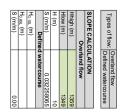
Carolina, Cedara, Estcourt, Jan Smuts, Kokstad, Krugersdorp, Mafeking, Piet Retief, Potchefstroom, Pretoria, Roodeplaat, Rustenburg, Sheeprun, Towoomba

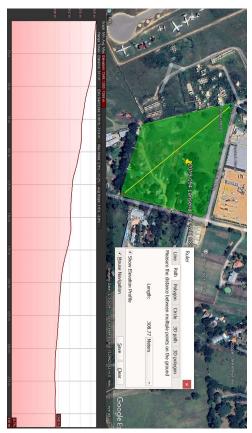
Tyd waarvoor die Intensiteit bepaal word (min)

Herhaalings Periode T	100	50	25	20	10	5	2
Tyd t (min)	15	15	15	15	15	15	15
Reenval Intensiteit I (mm/hr)	207	183	157	152	129	107	80

Stormwater - Standaard Intensiteitskrommes

Klas =	В
t =	30


Carolina, Cedara, Estcourt, Jan Smuts, Kokstad, Krugersdorp, Mafeking, Piet Retief, Potchefstroom, Pretoria, Roodeplaat, Rustenburg, Sheeprun, Towoomba


Tyd waarvoor die Intensiteit bepaal word (min)

Herhaalings Periode T	100	50	25	20	10	5	2
Tyd t (min)	30	30	30	30	30	30	30
Reenval Intensiteit I (mm/hr)	150	130	108	104	86	71	50

Calculated By		DvdM						28/02/2025	
			SICAL CH	PHYSICAL CHARACTERISTICS	TICS		Date	20/02/20/02	
Size of catchment (A)		0.03879	έm²	Choose type of flow	e of flow		Overland flow	v	
Longest watercourse (L)		0.31 km	Śm	Rainfall region			Lance	Lanceria - Johannesburg	sburg
Average slope (S _{srt})		0.032258 m/m	m∕m			AREA DISTRIBUTION FACTORS	TION FACT	ORS	
Dolomite area (D _%)		0%			Rural (α)			Urban (β)	
itation (M	3	705 mm	mm		100%		3	0%	
RURAL	e e					URBAN ®	N ®		
Surface Slope	%	Factor	င့္အ	Description			%	Factor	C ₂
Wetlands and pans	0%	0.03	0	Lawns	1200			2	-
Hilly	00%	0.00	0.00	Sandy steen (>7	~270J			0.1	
Choose and the second	0%	0.10		Hanning, steep (~1.76)				0.2	
Steep areas	0%	0.26	-	Heavy soil, nat (<2 %)	Hat (<2%)			0.17	, c
Permeability	%	Fantor	0.00	Residential areas	areas			0.00	-
Verv permeable	50%	0.04	0 00	Houses				7 0	-
Permeable	50%	0.08	0.04	Flats				0.7	
Semi-permeable	0%	0.00	-	Industry				0.7	~
Impermeable	0%	0.26	0	Light Industrial	ia i			8.0	0
Total	100%	•	0.06	Heavy Industrial	trial			0.9	0
Vegetation	%	Factor	ç	Business					
Thick bush and plantation	0%	0.04	0	City centre				0.95	0
Light bush and farm-lands	50%	0.11	0.055	Suburban				0.7	0
Ciassianas	00 /0	0.21	0.100	Ou cou					
Total	0%0	0.28			200		0.0/	F	•
	NTRATIO	V (T _c)	0.10	Notes:			0,0		
Overland flow ⁽³⁾	Defi	Defined watercourse	urse		If T _C < 0	If $T_{\rm C}$ < 0.25 hours, use $T_{\rm C}$ = 0.25 hours.	se T _C = 0.25	hours.	
0.31		0.31	31					001-0	
3065	Sav	0.032258065	58065	$T_{c} = 1$	0,604(-7)	$(L)^{0,467}$	$T_{c} =$	0.87/2~	0,385
Te 0.50804 hours	77	6.058832 min	min		$\sqrt{S_{av}}$	av		1000Sav	
-			OFF	COEFFICIENT	-				
Return period (years), T			2	5	10	20	25	50	100
Run-off coefficient, C_1 ($C_1 = C_S + C_p + C_V$)			0.3	0.3	0.3	0.3	0.3	0.3	0.3
Adjusted for dolomitic areas,C _{1D}			0.3	0.3	0.3	0.3	0.3	0.3	0.3
Adjustment factor for initial saturation,	, 12		5	7	2020	222	05.0	2	3
F _t ®			0.50	0.55	0.60	0.67	0.70	0.83	1.00
Adjusted run-off coefficient, C _{1T}			0.15	0.165	0.18	0.201	0.209	0.249	0.3
Coombined run-off mefficiret C-									
(= αC_{1T} + βC_2 + γC_3)			0.15	0.17	0.18	0.20	0.21	0.25	0.30
			RAI	RAINFALL					
Return period (years), T			2	5	10	20	25	05	100
Point rainfall (mm), P _T ®									
Point intensity (mm/hour), P _T (= P _T /T _C)	F _c)		80	107	129	152	157	183	207 Intensity Curve
Area reduction factor (%), $ARF_T^{(3)}$			100%	100%	100%	100%	100%	100%	100%
Average intensity (mm/hour), I _T			80	107	129	152	157	183	207
(= P _{IT} × AKF _T)					5	8	R	3	100
Newi II per iou (years), i			~	U	5	07	22	9	00
Doot from Im3 by D-DIA/3 B			0 12	0.19	0.02	0.33	0.35	0.49	0.67

$\becarption of Catchment (a) 2021-094-23 Larseria X3k6 Determined by Determined (b) Determined (c) Determi$				RATION	AL METHO	DD (ALTER	NATIVE 1)				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Descriptio	on of Catchment					,				
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$									Date	28/02/2025	
Onget WaterCourse (L) 0.31 km Ranfall region Lancetral - Johannesburg Nerge slope (S _N) 0.032258 m/m AREA DISTRIBUTION FACTORS 100% Alean annual precipitation (MAP) ^(%) 705 m/m 0% 100% Rural (a) 0% 0% 100% 100% Wate Solution (MAP) ^(%) 705 m/m 0% 100% 100% Wate Solution (MAP) ^(%) 0.03 0 Lawns % Factor C Wate Solution (MAP) ^(%) 0.03 0 Lawns 0.1 0 0.2 0 0.1 0 0.2 0 0.1 0 0.2 0 0.1 0 0.2 0 0.2 0 0.1 0 0.2 0 0.1 0 0.2 0 10.7 0.0 0.1 0 0.1 0 0 0.1 0 0.1 0 0 0.1 0 0 0 0 0 0.1 0 0 0 0 0 0 <td></td> <td></td> <td></td> <td>PH</td> <td>YSICAL CH</td> <td>ARACTERIS</td> <td>STICS</td> <td></td> <td></td> <td></td> <td></td>				PH	YSICAL CH	ARACTERIS	STICS				
wirding slope (S_a) 0.032250 m/m AREA DISTRIBUTION FACTORS Dolomite area (D_a) 0% Rural (a) Uirban (B) Bolomite area (D_a) 0% Rural (a) Uirban (B) RURALO URBAN O URBAN O URBAN O Watarde Slope (S_a) % Factor C_G Description % Factor C Watarde Slope (S_a) 0.03 0 Lawns 0.01	Size of cate	chment (A)		0.03879	km ²	Choose typ	e of flow		Overland flo	w	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $				0.31	km	Rainfall reg					esburg
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Average slo	ope (S _{av})		0.032258	m/m		ARE	A DISTRIBU	UTION FACT	ORS	
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Dolomite a	irea (D _%)		0%			Rural (a)			Urban (β)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Mean annu	ual precipitation (MAP))#	705	mm		0%			100%	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $								URB	AN ®		
Veltands and pans 0 0.03 0 Lewns 0 <td>Surface SI</td> <td></td> <td></td> <td>Factor</td> <td>C.</td> <td>Descriptio</td> <td>n</td> <td>0115</td> <td></td> <td>Factor</td> <td>C₂</td>	Surface SI			Factor	C.	Descriptio	n	0115		Factor	C ₂
THAT areas 0.08 0 Sandy, fist (<2%) 0.11 0.1 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.11 0.12 0.11 0.11 0.11 0.12 0.11 <th< td=""><td></td><td></td><td>70</td><td></td><td></td><td></td><td></td><td></td><td>70</td><td>1 40101</td><td>•2</td></th<>			70						70	1 40101	•2
uily 0.16 0 Sandy, steep (7%) 0.2 0.2 leep areas 0.26 0 Heavy soil, flat (-2%) 0.17 0.3 oral 0% - 0 Heavy soil, steep (-7%) 0.35 0.35 errmeable 0.04 0 Houses 0.5 0.5 0.5 errmeable 0.08 0 Flats 0.7 0.5 0.5 errmeable 0.16 0 Industry - 0 Heavy industrial 0.7 0.5 oral 0% - 0 Heavy industrial 0.0% 0.8 0 oral 0% - 0 Heavy industrial 100% 0.8 0 ight bush and farm-lands 0.11 0 Suburban 0.7 0 o vegetation 0.22 0.21 Stretes 0.95 0 o vegetation 0.23 0 Maximum flood 1 0 o vegetation 0.24 0							(<2%)			0.1	0
Response 0.26 0 Heavy soil, flat (-2%) 0,17 0,13 0,13 0,11 0,18 0,11 0,18 0,11	lilly					Sandy, stee	ep (>7%)				0
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Steep area	S									0
Dermeability % Factor C _p Residential area 7 0.001 fery permeable 0.04 0 Houses 0.5 0 fery permeable 0.08 0 Flats 0.7 0 semi-permeable 0.16 0 Industry 0.7 0 mpermeable 0.26 0 Light Industrial 0% 0.8 0 foldal 0% - 0 Heavy industrial 100% 0.8 0 //egetation % Factor C _V Business 0.95 0 Thick bush and plantation 0.04 0 Streets 0.95 0 ight bush and fam-lands 0.11 0 Streets 0.95 0 ight bush and plantation 0.28 0 Maximum flood 1 1 0 ight bush and plantation 0.21 0 Streets 0.95 0 0 0 1 0 0 0 1			0%	0.20	-						0
fery permeable 0 0 Houses 0.5 0 rermeable 0.08 0 Flats 0.7 0 mpermeable 0.16 0 Industry 0 0 mpermeable 0.26 0 Light Industrial 0% 0.8 0 forlat 0% - 0 Heavy Industrial 100% 0.8 0 forlat 0% - 0 Heavy Industrial 100% 0.8 0 fight bush and plantation 0.04 0 City centre 0.95 0 forlat 0% - 0 Total (C2) 100% - 0 forlat 0% - 0 Total (C2) 100% - 0 0.02 If T_C < 0.25 hours, use T_C = 0.25 hours.		lity		Factor	÷					0.55	Ŭ
Permeable 0.08 0 Flats 0.7 0 Semi-permeable 0.16 0 Industry 0			70							0.5	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					-					0.7	U
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					-		trial	_	00/	6.0	0
Image: frequencies Image:		JIC			-	•					0
Definition 0.04 0 City centre 0.95 0 ight bush and farm-lands 0.11 0 Suburban 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0 0.7 0 0.95 0 0.95 0 0.95 0 0.95 0 0.95 0 0.95 0 0.95 0 0.95 0 0.95 0 0.95 0 0 0.95 0 0 0.95 0 0 0.95 0 0 0.95 0 0 0.95 0 0 0.95 0					-		sual		100%	0.8	0.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	•		%								
Streets 0.95				0.04	-					0.95	0
Io vegetation 0.28 0 Maximum flood 10.95 10.95 Ordal 0% - 0 Total (C ₂) 100% - 0 100% - 0 100% - 0 0.02 100% - 0 00% - 0 Total (C ₂) 100% - 0<				0.11	-					0.7	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Grasslands	S		0.21	0					0.95	0
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	lo vegetat	ion		0.28	0	Maximum f	lood			1	0
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	fotal		0%	•	0	Total (C ₂)			100%	-	0.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		TIME OF CONC	ENTRATIO	N (T _c)		Notes:					
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	C	Overland flow ³	Defi	ined waterco	urse		If T _C < 0	0.25 hours,	use T _C = 0.25	hours.	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.02					-		-		
Constraint Tomology			L	0.	31	-		7		0.0712	
Constraint Tomology	Sav	0.032258065	Sav	0.032	258065	$T_c =$	0.604(-r)	0,467	$T_{-} =$	$(-0.87L^{\circ})$	0,385 (
Constraint Tomology		7.524334 min	Tc	6.058832	min	•6 -	v,00 (_/	San	10 -	1000Sa	,
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	c	0.125406 hours	Тс				•				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					2	5	10	20	25	50	100
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.8	0.8	0.8	0.8	0.8	0.8	0.8
$\begin{array}{c c} C_1(1 - D_{k}) + C_1 D_k (\Sigma (D_{baser} \times C_{SN}))^{\oplus} & 0.8 & 0$											
$\begin{array}{c c c c c c c c c c c c c c c c c c c $					0.8	0.8	0.8	0.8	0.8	0.8	0.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	= C ₁ (1 - D	$V_{\%}) + C_1 D_{\%} (\Sigma (D_{factor} \times C_{S^{\circ}}))$	e)))		0.0	0.0	0.0	0.0	0.0	0.0	0.0
$\begin{array}{c c c c c c c } \hline 0.75 & 0.80 & 0.85 & 0.90 & 0.91 & 0.93 & 1.1 \\ \hline \mbox{ddjusted run-off coefficient, C_{TT} & 0.6 & 0.64 & 0.68 & 0.72 & 0.7266667 & 0.76 & 0 \\ \hline \mbox{combined run-off coefficient, C_{TT} & 0.80 & 0$	Adjustment	t factor for initial saturat	ion,		0.75	0.00	0.05	0.00	0.04	0.05	4.00
$\begin{array}{c c_{1D} \times F_{1} \end{pmatrix} & 0.6 & 0.64 & 0.68 & 0.72 & 0.7266667 & 0.76 & 0 \\ \hline c_{0D} \times F_{1} \end{pmatrix} & 0.6 & 0.64 & 0.68 & 0.72 & 0.7266667 & 0.76 & 0 \\ \hline c_{0D} \times F_{1} \end{pmatrix} & 0.80 & 0.8$					0.75	0.80	0.85	0.90	0.91	0.95	1.00
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	djusted ru	un-off coefficient, C1T									
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-)			0.6	0.64	0.68	0.72	0.7266667	0.76	0.8
$\begin{array}{c c c c c c c c c c c c c c c c c c c $											
RAINFALL RAINFALL Point rainfall (mm), $P_1^{(0)}$ 2 5 10 20 25 50 10 Point rainfall (mm), $P_1^{(0)}$ 2 5 10 20 25 50 10 Point rainfall (mm), $P_1^{(m)}$ 80 107 129 152 157 183 20 Verage relationsity (mm/hour), $P_1^{(m)}$ 100% 100%					0.80	0.80	0.80	0.80	0.80	0.80	0.80
teturn period (years), T 2 5 10 20 25 50 110 voint rinfall (mm), $P_{\pi}^{(0)}$ 80 107 129 152 157 183 20 voint intensity (mm/hour), P_{π} (= $P_{T}T_{C}$) 80 107 129 152 157 183 20 vear eduction factor (%), ARF_{T}^{(2)} 100% 100% 100% 100% 100% 100% 100% 100 100 100 100 100 100 100 100 100% 100 <td>- uc_{1T} + p</td> <td>iC₂ + γC₃)</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>L</td> <td></td> <td></td> <td></td>	- uc _{1T} + p	iC ₂ + γC ₃)						L			
voint rainfall (mm), $P_{T}^{(0)}$ voint intensity (mm/hour), P_{T} (= $P_{T}T_{O}$) voint intensity (mm/hour), P_{T} (= $P_{T}X$ ARF, T) <thvoi< td=""><td>oturn re-</td><td>ried (veare) T</td><td></td><td></td><td></td><td></td><td>10</td><td>20</td><td>25</td><td>50</td><td>100</td></thvoi<>	oturn re-	ried (veare) T					10	20	25	50	100
					2	2	10	20	25	50	100
vrea reduction factor (%), ARF $_{1}^{(0)}$ 100% 100%											
werage intensity (mm/hour), I _T 80 107 129 152 157 183 20 = P _{iT} x ARF _T) 2 5 10 20 25 50 10			_T /1 _C)				-	-	-		207
= P _{iT} x ARF ₇) 80 107 129 152 157 183 20 Return period (years), T 2 5 10 20 25 50 10					100%	100%	100%	100%	100%	100%	100%
= P _{f1} x ARF ₇) 2 5 10 20 25 50 10 Return period (years), T 2 5 10 20 25 50 10	Average in	tensity (mm/hour), I _T			80	107	120	152	157	183	207
	= P _{iT} x AR	F _T)			00	107	123	152	107	100	201
	Return per	riod (years), T			2	5	10	20	25	50	100
	Dealetter	(0.60	0.02	4.44	1.01	1.25	1 50	1 70
					0.69	0.92	1.11	1.31	1.35	1.58	1.78

Types of flow:	Overland flow
Types of now.	Overland flow Defined watercourse

SLOPE CALC	JLATION
Ov	erland flow
Hhigh (m)	1359
Hlow (m)	1349
H (m)	10
S (m/m)	0.032258065
Define	d watercourse
H _{0.10L} (m)	
H _{0.85L} (m)	
S (m/m)	0.00

STORMWATER RUN-OFF - Post Development

Tc (minutes)

1₅

A (km²)	207	183	157	152	129	107	80	l (mm/hr)	С	Q = CIA/3.6
0.038790	100	50	25	20	10	5	2	Return Period	0.9	

2.009	100
1.776	50
1.524	25
1.475	20
1.252	10
1.038	5
0.776	2
Q (m³/s)	Return Period (years)

Date: Project: Portion 5 and 6 of the Farm Sunrella A/H 2025/02/28

Determine Run-off Coefficient:

Ē	IIRRAN ²		
Description	%	Factor	C_2
Lawns			
Sandy, flat (<2%)	0%	0.1	0
Sandy, steep (>7%)	0%	0.2	0
Heavy soil, flat (<2%)	0%	0.17	0
Heavy soil, steep (>7%)	0%	0.35	0
Residential areas			
Houses	0%	0.5	0
Flats	0%	0.7	0
Industry			
Light Industrial	0%	0.8	0
Heavy Industrial	100%	0.9	0.9
Business			
City centre	0%	0.95	0
Suburban	0%	0.7	0
Streets	0%	0.95	0.000
Maximum flood	0%	<u> </u>	0.000
Total (C ₂)	100%		0.90

STORMWATER RUN-OFF - Pre Development

Tc (minutes)

30

Q = CIA/3.6

S 01.40.0	
С	0.3
l (mm/hr)	Return Period
50	2
71	5
86	10
104	20
108	25
130	50
150	100
A (km²)	0.038790

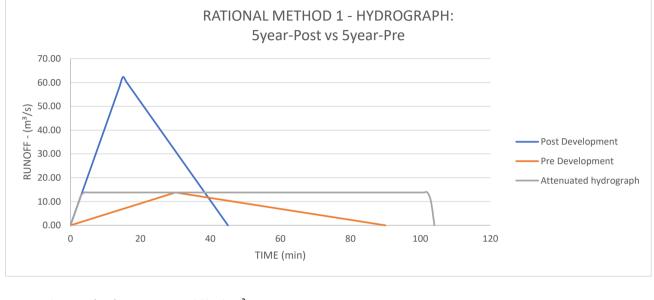
0.400	
	100
0.421	50
0.349	25
0.336	20
0.278	10
0.230	5
0.162	2
	(years)
Q (m³/s)	Period
	Return

Determine Run-off Coefficient:

70	RURAL		
Surface Slope	%	Factor	Cs
Wetlands and pans	0%	0.03	0
Flat areas	%06	0.08	0.072
Hilly	10%	0.16	0.016
Steep areas	%0	0.26	0
Total	100%	•	0.1
Permeability	%	Factor	C₽
Very permeable	0%	0.04	0
Permeable	70%	0.08	0.056
Semi-permeable	30%	0.16	0.048
Impermeable	0%	0.26	0
Total	100%		0.1
Vegetation	%	Factor	Cv
Thick bush and plantation	15%	0.04	0.006
Light bush and farm-lands	70%	0.11	0.077
Grasslands	15%	0.21	0.032
No vegetation	0%	0.28	0
Total	100%		0.1
Total			0.3

Portion 5 and 6 of the Farm Sunrella A/H

Project:

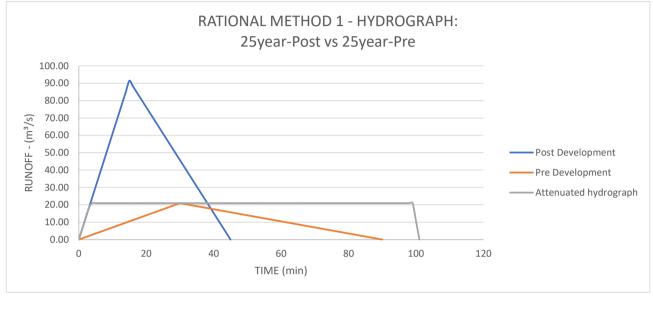

Date:

2025/02/28

HYDROGRAPH - RATIONAL METHOD 1

Location: Portion 5 and 6 of the Farm Sunrella A/H
Date: 28/02/2025

Site	3.879 ha
Tc(Pre-development)	30 min
Tc(Post-development)	15 min
Tc Factor	3


Attenuation Pond Volume Attenuation Attenuation Pond Height Attenuation Pond Area 863.59 m³ 222.6326 m³/ha 1.5 m 575.728 m²

(JRA Requirements: 300-350m³/ha)

HYDROGRAPH - RATIONAL METHOD 1

Location: Portion 5 and 6 of the Farm Sunrella A/H Date: 28/02/2025

Site	3.879 ha
Tc(Pre-development)	30 min
Tc(Post-development)	15 min
Tc Factor	3

Attenuation Pond Volume1244.86 m³Attenuation320.9219 m³/ha(JRA Requirements: 300-350m³/ha)Attenuation Pond Height1.5 mAttenuation Pond Area829.904 m²

EXTERNAL PRELLER ROAD STORMWATER PIPE

Pipe list					Graph		
100D Concrete (ND)	ID		ן 1600				
150	153		1400 -				
225	229		1400 7				
300	292		1200 -				
375	369						<u>→</u>
450	445		1000 -				
525	514		800 -				\
600	585		000				
675	647		600 -				
750	718						
825	788		400 -				
900	853		200 -				
1050							
1200	1127		0 ↓				
1350	1262		0	50		1000	1500
1500	1383			Calc	ulation I	nput	
1650	1524		Pipe Size		1500	mm	
1800	1665		Slope (1:x)		125		
1950	1800		Slope		0.008	-	
			Flow Dept	h	1106.4		
			Diameter		1383	mm	
			Manning		0.012		
					Results		
			А	1.288338	m²		
Calculation	l		V	4.18	m/s		
h	1.106	m	$Q_{Calculated}$	5.391	m³/s		
r	-0.4149	m	Q _{Calculated}	5391	€/s		
R	0.6915	m	% Full	80%			
s	3.062	m	Q _{Required}	2400	€/s		
а	1.106	m		-	-	-	
θ	253.74	deg					

ANNEXURE H: CULVERT CALCULATIONS

RATIONAL METHOD (ALTERNATIVE 1))						
	n of Catchment			.anseria X5	&6 Culvert	Catchment	Area			
Calculated	Ву		DvdM					Date	05/03/2025	
					ARACTERIS					
Size of cate			0.64433		Choose type of flow			Overland fle	ow	
	tercourse (L)		2.35	km	Rainfall reg					
Average slo			0.014894	m/m			A DISTRIBU	TION FACT		
Dolomite ar	1 101	0.	0%			Rural (α)			Urban (β)	
Mean annu	al precipitation (MAP)	0#	675	mm		100%			0%	
			1				URB		1	
Surface SI		%	Factor	Cs	Description	n		%	Factor	C ₂
Wetlands a	nd pans	0%	0.03	0	Lawns					
Flat areas		50%	0.08	0.04	Sandy, flat			12%	0.1	0.012
Hilly		50%	0.16	0.08	Sandy, stee	ep (>7%)		0%	0.2	0
Steep areas	S	0%	0.26	0	Heavy soil,	flat (<2%)		0%	0.17	0
Total		100%	-	0.12	Heavy soil,	steep (>7%)	0%	0.35	0
Permeabili	ty	%	Factor	CP	Residentia	l areas				
Very perme	able	0%	0.04	0	Houses			35%	0.5	0.175
Permeable		50%	0.08	0.04	Flats			0%	0.7	0
Semi-perm	eable	50%	0.16	0.08	Industry					
Impermeab	le	0%	0.26	0	Light Indust	trial		5%	0.8	0.04
Total		100%	-	0.12	Heavy Indu	strial		0%	0.9	0
Vegetation	l.	%	Factor	Cv	Business					
Thick bush	and plantation	0%	0.04	0	City centre			15%	0.95	0.1425
Light bush	and farm-lands	50%	0.11	0.055 Suburban			0%	0.7	0	
Grasslands		50%	0.21	0.105				33%	0.95	0.3135
No vegetati	ion	0%	0.28	0	Maximum f	lood		0%	1	0
Total		100%	-	0.16	Total (C ₂)			100%	7.32	0.683
	TIME OF CONC		N (T _c)		Notes:					
0	verland flow ³		ned waterco	ourse		If $T_{\rm C} < 0$).25 hours, u	ise T _C = 0.2	5 hours.	
r	0.4					0				
L	2.35	L	2	.35			.1		0.0712	
Sav	0.014893617	Sav	0.014	893617	$T_{C} =$	0.604(-7)	$\left(\frac{L}{\overline{S_{av}}}\right)^{0,467}$	$T_c =$	$(-0.8/L^2)$	0,385_
Tc	1.567 hours	Tc		hours	L L		Sav	- 0	`1000Sa	v
Tc	94.025 min	Tc	38.814							
Detum ner	iod (years), T				OEFFICIEN			05	50	400
				2	5	10	20	25	50	100
Run-off coe				0.4	0.4	0.4	0.4	0.4	0.4	0.4
$(C_1 = C_S + 0)$										
	r dolomitic areas,C _{1D}	~		0.4	0.4	0.4	0.4	0.4	0.4	0.4
(= C ₁ (1 - D ₂	$_{6}$) + C ₁ D _% (Σ(D _{factor} x C)) factor for initial satura	s%)) ⁽⁴⁾			****					***
	factor for initial satura	ition,		0.50	0.55	0.60	0.67	0.70	0.83	1.00
Ft ^S				0.00	0.00	0.00	0.07	0.10	0.00	1.00
-	n-off coefficient, C _{1T}			0.2	0.22	0.24	0.268	0.278667	0.332	0.4
$(= C_{1D} \times F_t)$				0.2	0.22	0.24	0.200	0.210001	0.002	0.4
Coombined	I run-off coefficiret, CT			0.00	0.00	0.04	0.07	0.00	0.00	0.40
$(= \alpha C_{1T} + \beta)$	$C_2 + \gamma C_3$			0.20	0.22	0.24	0.27	0.28	0.33	0.40
				RAI	NFALL					
	iod (years), T			2	5	10	20	25	50	100
Point rainfa	ll (mm), P _T ⁶			32	45	56	66	70	83	98
Point intens	sity (mm/hour), P _{iT} (= F	P _T /T _C)		20.4201	28.71577	35.73518	42.11646	44.66897	52.96464	62.53656
	tion factor (%), $ARF_T^{(2)}$			100%	100%	100%	100%	100%	100%	100%
	ensity (mm/hour), I _T									
(= P _{iT} x ARI				20.4201	28.71577	35.73518	42.11646	44.66897	52.96464	62.53656
	iod (years), T			2	5	10	20	25	50	100
	<i>v n</i>			_						
Peak flow (m ³ /s), Q=CIA/3.6			0.73	1.13	1.54	2.02	2.23	3.15	4.48
Peak flow (l/s), Q=CIA/3.7			731.0	1130.7	1535.0	2020.2	2227.9	3147.2	4477.1

Types of flow	Overland flow
Types of nov	v. Defined watercourse
SLOPE CAL	CULATION
0	verland flow
Hhigh (m)	1395
Hlow (m)	1360
H (m)	35
S (m/m)	0.014893617
Defin	ed watercourse
H _{0.10L} (m)	235
H _{0.85L} (m)	1997.5
S (m/m)	1.00

0.4

Stormwater - S	Standaar	d Intensi	teitskrom	nmes			
Klas =	в			ara, Estcourt, Jan tchefstroom, Pri			
t =	94		Tyd waarvoor (die Intensiteit be	paal word (min)		
Herhaalings Periode T	100	50	25	20	10	5	2
Tyd t (min)	94	94	94	94	94	94	94
Reenval Intensiteit	98	83	70	66	56	45	32

CULVERT DESIGN CHECK

MAP	750 mm	А	0.64433 km2
120	125 mm/hr	С	0.4
150	165 mm/hr	Q5	2.30 m3/s
		Q25	3.70 m3/s
		Q50	4.50 m3/s
Freeboard above culvert	0.6 m		
B - Width (m)	1.8 m		
D - Height (m)	1.5 m		

		Inlet Con	trol			
Q25	3.70			Q50	4.50	
Cb	0.9			Cb	0.9	
В	1.8			В	1.8	
D	1.5			D	1.5	
g	9.81			g	9.81	
H1	1.8	m		H1	1.8	m
H1/D	1.2	<1.2		H1/D	1.2	<1.2
Q(check)	6.669932			Q(check)	6.669932	

		Outlet Co	ntrol
Q25	3.70		
Ch	0.8		
В	1.8		
D	1.5		
g	9.81		
H1	2.1	m	
H1/D	1.4	>1.2	
Q(check)	9.076627		

Q50	4.50	
Ch	0.8	
В	1.8	
D	1.5	
g	9.81	
H1	2.1	m
H1/D	1.4	>1.2
Q(check)	9.076627	

Rational Method used for pipe s	sizing		
R= Returning period	R=	50 years	
A= Area	A=	644330 m²	
C=Run-off. Coeficient	C=	0.4	
Map=Mean Annual Presipitation	Map=	750 mm	
tc= Time Of Concentration	tc=	1.570 h	
I= Intensity To Be Calculated	l=	63 mm/h	
	Q=	4.505 m³/s	
	I/S=	4505.436 L/s	

		-	
Rational Method used for pipe s	izing		
R= Returning period	R=	25 years	
A= Area	A=	644330 m²	
C=Run-off. Coeficient	C=	0.4	
Map=Mean Annual Presipitation	Map=	750 mm	
tc= Time Of Concentration	tc=	1.570 h	
I= Intensity To Be Calculated	I=	51 mm/h	
	Q=	3.660 m ³ /s	
	I/S=	3659.551 L/s	

Rational Method used for pipe s	izing		
R= Returning period	R=	5 years	
A= Area	A=	644330 m²	
C=Run-off. Coeficient	C=	0.4	
Map=Mean Annual Presipitation	Map=	750 mm	
tc= Time Of Concentration	tc=	1.570 h	
I= Intensity To Be Calculated	I=	32 mm/h	
	Q=	2.258 m³/s	
	I/S=	2258.067 L/s	
RATIONAL METHOD (ALTER	NATIVE 1)		_

				OD (ALTERNATIVE 1)					
Description of Catchment		2019-094-L	.anseria						
Calculated By		DvdM			Date	05/03/2025			
PHYSICAL CHARACTERISTICS			Types of flow:	Overland flow					
Size of catchment (A)		0.64433		Choose type of flow	Overland flo	W		rypes of now.	Defined watercourse
Longest watercourse (L)		2.35		Rainfall region					
Average slope (S _{av})		0.014894	m/m	AREA DISTRIB	AREA DISTRIBUTION FACTORS				ULATION
Dolomite area (D%)		0%		Rural (α)		Urban (β) Overlan		erland flow	
Mean annual precipitation (MAP)	©#	675	mm	100%		0%		Hhigh (m)	1395
RU	RAL®			URB	AN ©		Hlow (m)		1360
Surface Slope	%	Factor	Cs	Description	%	Factor	C ₂	H (m)	35
Wetlands and pans	0%	0.03	0	Lawns				S (m/m)	0.014893617
Flat areas	50%	0.08	0.04	Sandy, flat (<2%)	12%	0.1	0.012	Define	d watercourse
Hilly	50%	0.16	0.08	Sandy, steep (>7%)	0%	0.2	0	H _{0.10L} (m)	235
Steep areas	0%	0.26	0	Heavy soil, flat (<2%)	0%	0.17	0	H _{0.85L} (m)	1997.5
Total	100%	-	0.12	Heavy soil, steep (>7%)	0%	0.35	0	S (m/m)	1.00
Permeability	%	Factor	CP	Residential areas					
Very permeable	0%	0.04	0	Houses	35%	0.5	0.175		
Permeable	50%	0.08	0.04	Flats	0%	0.7	0	0.4	L .
Semi-permeable	50%	0.16	0.08	Industry					
Impermeable	0%	0.26	0	Light Industrial	5%	0.8	0.04		
Total	100%	-	0.12	Heavy Industrial	0%	0.9	0		
Vegetation	%	Factor	Cv	Business					
Thick bush and plantation	0%	0.04	0	City centre	15%	0.95	0.1425		
Light bush and farm-lands	50%	0.11	0.055	Suburban	0%	0.7	0		
Grasslands	50%	0.21	0.105	Streets	33%	0.95	0.3135		
No vegetation	0%	0.28	0	Maximum flood	0%	1	0]
Total	100%	-	0.16	Total (C ₂)	100%	7.32	0.683		
TIME OF CON	CENTRATIO	N (T _c)		Notes:					
Overland flow [®]	Def	ined waterco	ourse	If $T_C < 0.25$ hours,	use T _C = 0.2	5 hours.			
r 0.4									
L 2.35	L		.35	rL		$0.87I^{2}$			
Sav 0.014893617	Sav		893617	$T_C = 0,604(\frac{rL}{\sqrt{S_{av}}})^{0,467}$	$T_c =$	(10071	-) ^{0,385}		
Tc 1.567 hours	Tc		hours	$\sqrt{S_{av}}$		1000S _a	v		
Tc 94.025 min	Tc	38.814							

Rational Method used for pipe s	izing		
R= Returning period	R=	50 years	
A= Area	A=	644330 m ²	
C=Run-off. Coeficient	C=	0.4	
Map=Mean Annual Presipitation	Map=	646 mm	
tc= Time Of Concentration	tc=	0.250 h	
I= Intensity To Be Calculated	l=	180 mm/h	
	Q=	12.870 m ³ /s	
	I/S=	12869.866 L/s	

Rational Method used for pipe s	izing		
R= Returning period	R=	25 years	
A= Area	A=	644330 m ²	
C=Run-off. Coeficient	C=	0.4	
Map=Mean Annual Presipitation	Map=	646 mm	
tc= Time Of Concentration	tc=	0.250 h	
I= Intensity To Be Calculated	l=	146 mm/h	
	Q=	10.454 m ³ /s	
	I/S=	10453.580 L/s	

Rational Method used for pipe s	izing		
R= Returning period	R=	5 years	
A= Area	A=	644330 m²	
C=Run-off. Coeficient	C=	0.4	
Map=Mean Annual Presipitation	Map=	646 mm	
tc= Time Of Concentration	tc=	0.250 h	
I= Intensity To Be Calculated	l=	90 mm/h	
-	Q=	6.450 m ³ /s	
	I/S=	6450.213 L/s	